The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment.
نویسندگان
چکیده
Low-oxygen stress imposed by field waterlogging is a serious impediment to plant germination and growth. Plants respond to waterlogging with a complex set of physiological responses regulated at the transcriptional, cellular, and tissue levels. The Arabidopsis (Arabidopsis thaliana) NAC domain-containing gene ANAC102 was shown to be induced under 0.1% oxygen within 30 min in both roots and shoots as well as in 0.1% oxygen-treated germinating seeds. Overexpression of ANAC102 altered the expression of a number of genes, including many previously identified as being low-oxygen responsive. Decreasing ANAC102 expression had no effect on global gene transcription in plants but did alter expression patterns in low-oxygen-stressed seeds. Increasing or decreasing the expression of ANAC102 did not affect adult plant survival of low-oxygen stress. Decreased ANAC102 expression significantly decreased germination efficiency following a 0.1% oxygen treatment, but increased expression had no effect on germination. This protective role during germination appeared to be specific to low-oxygen stress, implicating ANAC102 as an important regulator of seed germination under flooding.
منابع مشابه
ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis
NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC re...
متن کاملJUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis.
The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances toleran...
متن کاملORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana
We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR...
متن کاملSeed Production Affects Maternal Growth and Senescence in Arabidopsis.
Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) in...
متن کاملIntegration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis.
Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 149 4 شماره
صفحات -
تاریخ انتشار 2009